2018 AMC 12B Problems

Problem 1

Kate bakes 20 -inch by 18 -inch pan of cornbread. The cornbread is cut into pieces that measure 2 inches by 2 inches. How many pieces of cornbread does the pan contain?
(A) 90
(B) 100
(C) 180
(D) 200
(E) 360

Problem 2

Sam drove 96 miles in 90 minutes. His average speed during the first 30 minutes was 60 mph (miles per hour), and his average speed during the second 30 minutes was 65 mph . What was his average speed, in mph, during the last 30 minutes?
(A) 64
(B) 65
(C) 66
(D) 67
(E) 68

Problem 3

A line with slope 2 intersects a line with slope 6 at the point $(40,30)$. What is the distance between the x-intercepts of these two lines?
(A) 5
(B) 10
(C) 20
(D) 25
(E) 50

Problem 4

A circle has a chord of length 10 , and the distance from the center of the circle to the chord is 5 . What is the area of the circle?
(A) 25π
(B) 50π
(C) 75π
(D) 100π
(E) 125π

Problem 5

How many subsets of $\{2,3,4,5,6,7,8,9\}$ contain at least one prime number?
(A)128
(B)192
(C) 224
(D)240
(E) 256

Problem 6

Suppose S cans of soda can be purchased from a vending machine for Q quarters. Which of the following expressions describes the number of cans of soda that can be purchased for D dollars, where 1 dollar is worth 4 quarters?
(A) $\frac{4 D Q}{S}$
(B) $\frac{4 D S}{Q}$
(C) $\frac{4 Q}{D S}$
(D) $\frac{D Q}{4 S}$
(E) $\frac{D S}{4 Q}$

Problem 7

What is the value of

$$
\log _{3} 7 \cdot \log _{5} 9 \cdot \log _{7} 11 \cdot \log _{9} 13 \cdots \log _{21} 25 \cdot \log _{23} 27 ?
$$

(A) 3
(B) $3 \log _{7} 23$
(C) 6
(D) 9
(E) 10

Problem 8

Line Segment $\overline{A B}$ is a diameter of a circle with $A B=24$. Point C, not equal to A or B, lies on the circle. As point C moves around the circle, the centroid (center of mass) of (insert triangle symbol) $A B C$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?
(A) 25
(B) 38
(C) 50
(D) 63
(E) 75

Problem 9

What is

$$
\sum_{i=1}^{100} \sum_{j=1}^{100}(i+j) ?
$$

(A) 100,100
(B) 500,500
(C) 505,000
(D) $1,001,000$
(E) $1,010,000$

Problem 10

A list of 2018 positive integers has a unique mode, which occurs exactly 10 times. What is the least number of distinct values that can occur in the list?
(A) 202
(B) 223
(C) 224
(D) 225
(E) 234

Problem 11

A closed box with a square base is to be wrapped with a square sheet of wrapping paper. The box is centered on the wrapping paper with the vertices of the base lying on the midlines of the square sheet of paper, as shown in the figure on the left. The four corners of the wrapping paper are to be folded up over the sides and brought together to meet at the center of the top of the box, point A in the figure on the right. The box has base length w and height h. What is the area of the sheet of wrapping paper?

(A) $2(w+h)^{2}$
(B) $\frac{(w+h)^{2}}{2}$
(C) $2 w^{2}+4 w h$
(D) $2 w^{2}$
(E) $w^{2} h$

Problem 12

Side $\overline{A B}$ of $\triangle A B C$ has length 10 . The bisector of angle A meets $\overline{B C}$ at D, and $C D=3$. The set of all possible values of $A C$ is an open interval (m, n). What is $m+n$?
(A) 16
(B) 17
(C) 18
(D) 19
(E) 20

Problem 13

Square $A B C D$ has side length 30 . Point P lies inside the square so that $A P=12$ and $B P=26$. The centroids of $\triangle A B P$, $\triangle B C P, \triangle C D P$, and $\triangle D A P$ are the vertices of a convex quadrilateral. What is the area of that quadrilateral?

(A) $100 \sqrt{2}$
(B) $100 \sqrt{3}$
(C) 200
(D) $200 \sqrt{2}$
(E) $200 \sqrt{3}$

Problem 14

Joey and Chloe and their daughter Zoe all have the same birthday. Joey is 1 year older than Chloe, and Zoe is exactly 1 year old today. Today is the first of the 9 birthdays on which Chloe's age will be an integral multiple of Zoe's age. What will be the sum of the two digits of Joey's age the next time his age is a multiple of Zoe's age?
(A) 7
(B) 8
(C) 9
(D) 10
(E) 11

Problem 15

How many odd positive 3 -digit integers are divisible by 3 but do not contain the digit 3 ?
(A) 96
(B) 97
(C) 98
(D) 102
(E) 120

Problem 16

The solutions to the equation $(z+6)^{8}=81$ are connected in the complex plane to form a convex regular polygon, three of whose vertices are labeled A, B, and C. What is the least possible area of $\triangle A B C ?$
(A) $\frac{1}{6} \sqrt{6}$
(B) $\frac{3}{2} \sqrt{2}-\frac{3}{2}$
(C) $2 \sqrt{3}-3 \sqrt{2}$
(D) $\frac{1}{2} \sqrt{2}$
(E) $\sqrt{3}-1$

Problem 17

Let p and q be positive integers such that $\frac{5}{9}<\frac{p}{q}<\frac{4}{7}$ and q is as small as possible. What is $q-p$?
(A) 7
(B) 11
(C) 13
(D) 17
(E) 19

Problem 18

A function f is defined recursively by $f(1)=f(2)=1$ and

$$
f(n)=f(n-1)-f(n-2)+n
$$

for all integers $n \geq 3$. What is $f(2018)$?
(A) 2016
(B) 2017
(C) 2018
(D) 2019
(E) 2020

Problem 19

Mary chose an even 4-digit number n. She wrote down all the divisors of n in increasing order from left to right: $1,2, \ldots, \frac{n}{2}, n$. At some moment Mary wrote 323 as a divisor of n. What is the smallest possible value of the next divisor written to the right of 323 .
(A) 324
(B) 330
(C) 340
(D) 361
(E) 646

Problem 20

Let $A B C D E F$ be a regular hexagon with side length 1 . Denote X, Y, and Z the midpoints of sides $\overline{A B}, \overline{C D}$, and $\overline{E F}$, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of $\triangle A C E$ and $\triangle X Y Z$?
(A) $\frac{3}{8} \sqrt{3}$
(B) $\frac{7}{16} \sqrt{3}$
(C) $\frac{15}{32} \sqrt{3}$
(D) $\frac{1}{2} \sqrt{3}$
(E) $\frac{9}{16} \sqrt{3}$

Problem 21

In $\triangle A B C$ with side lengths $A B=13, A C=12$, and $B C=5$, let O and I denote the circumcenter and incenter, respectively. A circle with center M is tangent to the legs $A C$ and $B C$ and to the circumcircle of $\triangle A B C$. What is the area of $\triangle M O I$?
(A) $5 / 2$
(B) $11 / 4$
(C) 3
(D) $13 / 4$
(E) $7 / 2$

Problem 22

Consider polynomials $P(x)$ of degree at most 3 , each of whose coefficients is an element of $\{0,1,2,3,4,5,6,7,8,9\}$. How many such polynomials satisfy $P(-1)=-9_{\text {? }}$
(A) 110
(B) 143
(C) 165
(D) 220
(E) 286

Problem 23
Ajay is stading at point A near Pontianak, Indonesia, 0° latitude and $110^{\circ} \mathrm{E}$ longitude. Billy is standin at point B near Big Baldy Mountain, Idaho, USA, $45^{\circ} \mathrm{N}$ latitude and $115^{\circ} \mathrm{W}$ longitude.

Assume that Earth is a perfect sphere with center C. What is the degree measure of $\angle A C B$?
(A) 105
(B) $112 \frac{1}{2}$
(C) 120
(D) 135
(E) 150

Problem 24

How many x satisfy the equation $x^{2}+10,000\lfloor x\rfloor=10,000 x_{\text {? }}$?
(A) 197
(B) 198
(C) 199
(D) 200
(E) 201

Problem 25

Circles ω_{1}, ω_{2}, and ω_{3} each have radius 4 and are placed in the plane so that each circle is externally tangent to the other two. Points P_{1}, P_{2}, and P_{3} lie on ω_{1}, ω_{2}, and ω_{3} respectively such that $P_{1} P_{2}=P_{2} P_{3}=P_{3} P_{1}$ and line $P_{i} P_{i+1}$ is tangent to ω_{i} for each $i=1,2,3$, where $P_{4}=P_{1}$. See the figure below. The area of $\triangle P_{1} P_{2} P_{3}$ can be written in the form $\sqrt{a}+\sqrt{b}$ for positive integers a and b. What is $a+b$?

(A) 546
(B) 548
(C) 550
(D)552
(E)554

